人类的需求一定有明确需求和不明确需求两大类,搜索代表的是明确的需求,而个性化代表的是不明确需求,所以只要人类有获取信息的需要,个性化推荐一定会伴随人类的发展,一直持续下去。虽然推荐算法不会消亡,但是一定会遇到挑战和变数。

推荐算法工程师最大的危机来自于云计算及 AI 的发展,越来越多的云计算公司将 AI 作为云服务的基础能力 (包括推荐能力) 封装起来对外提供服务。过去两年,很多大公司都从 Mobile first 转为 AI first,将 AI 能力作为一项核心能力来打造,这一趋势会进化出越来越易用低价的 AI 服务。同时,有很多 AI 初创公司也试图构建垂直行业的 AI 解决方案,试图从大厂口中分一杯羹。 未来 AI 一定会成为云计算的“水电煤”,用户接入即可使用。

上述现象导致的直接后果就是,在不久的将来,越来越多的公司会选择从第三方技术提供方购买推荐服务,而不是自己从零开始构建推荐系统,最终会导致减少对推荐算法工程师的需求。

不过,随着 5G 技术的商业化、物联网的快速发展、VR/AR/MR 技术的成熟,会有更多的设备接入互联网,未来我们可以获取的信息量更大更广,身边充斥着各种讯息万变的信息。基于这些信息会产生满足人类各种新的需求的产品及服务。同时随着教育水平的提升,每个人将会更加独立、更加愿意表现自我,让自己的个性化需求得到最大程度的释放。

这种情况正好是个性化推荐需要解决的场景,所以未来个性化推荐会更加重要和普遍,各行各业会越来越依赖个性化推荐来满足用户在各种场景下的个性化需求,这些新的场景一定会采用不同的交互方式和推荐算法体系,这也是推荐算法工程师新的机会。