1、封面介绍
2、出版时间
2023年6月
3、内容介绍
近年来,深度学习在人工智能的发展过程中起到了举足轻重的作用,而图神经网络是人工智能领域的一个新兴方向,被称为图上的深度学习。
本书详细介绍了从深度学习到图神经网络的基础概念和前沿技术,包括图上的深度学习、图神经网络的数学基础、神经网络学习与算法优化、深度学习基础、神经网络中的表示学习、面向图数据的嵌入表示、初代图神经网络、空域及谱域图卷积神经网络等内容。为增强可读性,本书叙述清晰、内容深入浅出、图文并茂,力求降低初学者的学习难度。
本书既可作为人工智能领域研究和开发人员的技术参考书,也可作为对图上的深度学习感兴趣的高年级本科生和研究生的入门书。
4、推荐理由
本书从深度学习到图神经网络,涉及的理论知识全面细致,内含数学基础、优化算法、卷积神经网络、表示学习、嵌入表示、空域图卷积神经网络、谱域图卷积神经网络等。
本书写作风格通俗易懂,可读性非常高,图文并茂、深入浅出。即使是没有基础的高校学生和AI初阶从业者,也能很容易地通过本书入门,降低了前沿知识的学习门槛。
本书内含数十个代码范例,所有代码片段均可获得,学习过程中可以同时上机实践,效率倍增。
5、作者简介
张玉宏,博士毕业于电子科技大学,大数据分析师(高级),2009—2011年美国西北大学访问学者,2019—2020年美国IUPUI高级访问学者,CCF郑州分部执行委员,CFF公益大使。现执教于河南工业大学,主要研究方向为人工智能、大数据等。发表学术论文30余篇,先后撰写《深度学习之美:AI时代的数据处理与最佳实践》《Python极简讲义:一本书入门数据分析与机器学习》等科技图书15部。
杨铁军,博士,教授,博士生导师,河南省电子学会副理事长,河南省高等学校电子信息类专业教学指导委员会副主任委员,河南省数字政府建设专家委员会委员。主要研究方向:医学图像处理、粮食信息处理。
6、下载链接
本电子书可以提供下载,下载方式请移步:http://www.hbase.cn/archives/1147.html