1、封面介绍

book.jpg

2、出版时间

2024年7月

3、内容介绍

本书系统地介绍了高效模型压缩和模型设计的方法,在编写上兼顾理论和实践。本书主体部分详细介绍了模型压缩的方法论,包括高效模块设计、模型剪枝、模型量化、模型二值化、神经网络架构搜索、知识蒸馏几大部分。另外,简要介绍了定制化硬件加速器的设计及大语言模型的加速和压缩。

4、推荐理由

适读人群 :初学者,有一定科研经验、希望在相关科研方向进行探索的读者,需要工具书辅助解决实际问题的读者。

权威:出自芯片领域著名专家之手

系统:系统梳理模型压缩与设计关键技术

经验:提供实践中总结的分析思路和经验

5、作者简介

汪玉,清华大学电子工程系长聘教授、系主任,IEEE Fellow,国家自然科学基金杰出青年基金获得者,清华大学信息科学技术学院副院长,清华大学天津电子信息研究院院长。长期从事智能芯片、高能效电路与系统的研究,曾获得4次国际学术会议最佳论文奖及12次最佳论文提名。曾获CCF科学技术奖技术发明一等奖、国际设计自动化会议40岁以下创新者奖、CCF青竹奖等荣誉。2016年,知识成果转化入股深鉴科技,打造了世界一流的深度学习计算平台;2018年,深鉴科技被业内龙头企业赛灵思(现AMD)收购。2023年,推动成立无问芯穹,形成面向大模型的软硬件联合优化平台,在国内外10余种芯片上实现了业界领先的大模型推理性能。

宁雪妃,清华大学电子工程系助理研究员。主要研究方向为高效深度学习。支撑深鉴科技、无问芯穹的早期模型压缩和部署工具链工作;参与10余项高效深度学习相关项目;在机器学习、计算机视觉、设计自动化领域发表学术论文40余篇,其中包含在NeurIPS、ICLR、ICML、CVPR、ICCV、ECCV、AAAI、TPAMI上发表的学术论文共20篇;带领团队在NeurIPS18和CVPR20会议上获得国际比赛奖项。

6、下载链接

本电子书可以提供下载,下载方式请移步:http://www.hbase.cn/archives/1147.html