1、封面介绍

book.jpg

2、出版时间

2020年6月

3、推荐理由

适读人群 :机器学习工程师,以及高等院校人工智能、数据科学、计算机科学等相关专业学生
适合想要深入了解深度学习高级主题的机器学习工程师,以及高等院校人工智能、数据科学、计算机科学等相关专业学生阅读。

1.作者为新加坡国立大学硕士、澳大利亚国立大学博士,有丰富的科研和实践经历。

2.书中采用大量代码和图片,代码基于Python3,提供多个实战案例。

3.关注高级深度学习技术,包括自编码器、生成对抗网络、变分自编码器和深度强化学习等。

4.赠送本书源代码和彩色图片,可通过书中前言提供的地址进行下载。

《Keras高级深度学习》是高级深度学习技术的综合指南,内容包括自编码器、生成对抗网络(GAN)、变分自编码器(VAE)和深度强化学习(DRL),在这些技术的推动下,AI于近期取得了令人瞩目的成就。

《Keras高级深度学习》首先对多层感知器(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)进行了概述,这些是本书中介绍的更高级技术的构建模块。之后探索了包括ResNet和DenseNet在内的深度神经网络架构以及如何创建自编码器。读者将学习如何使用Keras和TensorFlow实现深度学习模型,并进一步实现其高级应用。随后,读者将会了解到有关GAN的所有知识,以及认识到其如何将AI性能提升到新的水平。在此之后,读者可快速了解VAE的实现方式,并将认识到GAN和VAE是如何具备生成数据的能力的,并且使所生成的数据对人类来说极具说服力。因此,该类方法已成为现代AI的一个巨大进步。为充分了解该系列相关先进技术,读者将会学习如何实现DRL,例如深度Q-Learning和策略梯度方法,这些方法对于AI在现代取得很多成就至关重要。

《Keras高级深度学习》适合想要深入了解深度学习高级主题的机器学习工程师,以及高等院校人工智能、数据科学、计算机科学等相关专业学生阅读。

4、作者简介

Rowel Atienza是菲律宾大学蒂利曼分校电气与电子工程学院副教授,并担任Dado和Maria Banatao研究所人工智能讲席教授。Rowel毕业于菲律宾大学,并一直对智能机器人十分着迷。他在新加坡国立大学从事AI增强四足机器人方面的工作,并以此获得工程学硕士学位。此后,他凭借其在人机交互主动视线跟踪领域的贡献,获得澳大利亚国立大学的博士学位。Rowel当前的研究重点是AI和计算视觉,他梦想着构建出可以感知、理解并推理的实用机器。Rowel获得了来自于菲律宾科学技术部(DOST)、菲律宾三星研究院和菲律宾高等教育委员会-菲律宾加利福尼亚高级研究所(CHED-PCARI)的多项科研资助。

5、下载链接

由于版权的原因,不再对外公开,仅限内部学习和交流使用。