1、封面介绍
2、出版时间
2019年1月
3、推荐理由
TensorFlow是谷歌研发的人工智能学习系统,是一个用于数值计算的开源软件库。《TensorFlow深度学习算法原理与编程实战》以基础+实践相结合的形式,详细介绍了TensorFlow深度学习算法原理及编程技巧。通读全书,读者不仅可以系统了解深度学习的相关知识,还能对使用TensorFlow进行深度学习算法设计的过程有更深入的理解。
《TensorFlow深度学习算法原理与编程实战》共14章,主要内容有:人工智能、大数据、机器学习和深度学习概述;深度学习及TensorFlow框架的相关背景;TensorFlow的安装;TensorFlow编程策略;深度前馈神经网络;优化网络的方法;全连神经网络的经典实践;卷积神经网络的基础知识;经典卷积神经网络的TensorFlow实现;循环神经网络及其应用;深度强化学习概述;TensorFlow读取数据的API;TensorFlow持久化模型的API;可视化工具TensorBoard的使用;TensorFlow使用多GPU或并行的方式加速计算等。
《TensorFlow深度学习算法原理与编程实战》内容通俗易懂,案例丰富,实用性强,特别适合对人工智能、深度学习感兴趣的的相关从业人员阅读,也适合没有相关基础但是对该方面研究充满兴趣的爱好者阅读。
4、作者简介
蒋子阳,多年专业编程工作经验,曾参与多个机器人目标识别与定位等深度学习相关项目,擅长图像识别算法、语音识别算法等。涉及行业包括金融、证券、汽车、公共安全等领域。近年来,本人对机器学习及深度学习进行了深入研究,随着TensorFlow的出现,开始将精力转移到TensorFlow深度学习算法原理的研究中,并专门推导过其中的大部分算法,对该框架有着独特的认识和深入的理解。
5、下载链接
由于版权的原因,不再对外公开,仅限内部学习和交流使用。