机器学习一般包含两类参数:超参数和参数。超参数的数目通常不多,在10以内。参数的数目可能很多,如卷积神经网络中有近千万个参数(权重)。

曲线拟合中,方程的次数就是超参数,多项式的系数就是参数。这两种参数的调参方式不同,超参数取值一般是人工设定的,参数值是根据参数优化算法自动寻优的。

超参数的取值对模型泛化性能有重大的影响,验证集就是用来决定最优超参数取值的。