分类 PyTorch 教程 下的文章


撰写于:  浏览:2045 次  分类:PyTorch 教程
1、梯度下降法简介梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。2、梯度下降法原理[...]

撰写于:  浏览:651 次  分类:PyTorch 教程
1、model eval简介model.eval()是PyTorch中的一个方法,用于将模型设置为评估模式(evaluation mode)。一般情况下,当我们完成模型的训练并准备对其进行评估、测试或推断时,会调用该方法。2、model eval的作用调用model.eval()的作用是将模型中的某些特定层或部分切换到评估模式。在评估模式下,一些层[...]

撰写于:  浏览:1816 次  分类:PyTorch 教程
1、PyTorch自动求导代码import torch input = torch.ones([2, 2], requires_grad=False) w1 = torch.tensor(2.0, requires_grad=True) w2 = torch.tensor(3.0, requires_grad=True) w3 = torch.t[...]

撰写于:  浏览:2004 次  分类:PyTorch 教程
1、维度与形状的区别当我们说一个向量的维度的时候,我们会说,这是一个1维度向量,2维向量,3维向量等等。在PyTorch中,计算维度是通过向量的形状获取的,如下代码所示:import torch input = torch.ones(3, 5) print(input) dim = len(input.shape) print(dim)2、维度[...]

撰写于:  浏览:597 次  分类:PyTorch 教程
1、torch.stack()函数的作用torch.stack()函数的参数形式为:torch.stack(inputs,dim=0,out=None),其作用是将若干个形状相同的张量在dim维度上连接,生成一个扩维的张量。比如,我们原本有若干个2维张量,连接之后可以得到一个3维的张量。2、torch.stack()函数的参数说明(1)inputs[...]

撰写于:  浏览:3047 次  分类:PyTorch 教程
CUDA是英伟达开发出的GPU计算框架。英伟达是制造GPU的公司,它为了让人们更好地使用自家生产出来的GPU,所以开发出CUDA用于操作GPU。如果没有CUDA,直接操作GPU则是一件非常困难的事情。我们买回的带英伟达GPU的新电脑,会自带GPU显卡驱动,显卡驱动的版本号制约着你将来要安装的CUDA。运行nvidia-smi命令,我们可以查看自己显[...]

撰写于:  浏览:387 次  分类:PyTorch 教程
这篇文章介绍的不错,分享给大家:https://blog.csdn.net/m0_48923489/article/details/136863726

撰写于:  浏览:528 次  分类:PyTorch 教程
1、什么是叶子节点PyTorch的最大特点是动态计算图,计算图是用来描述运算的有向无环图。计算图有两种主要元素:结点(Node)和边(Edge)。结点表示数据,例如张量,而边表示运算,例如加、减、乘、除、卷积等。对于节点而言,又分为叶子节点和非叶子节点。我们通常关注的叶子节点,那什么叶子节点呢?PyTorch中的张量tensor有一个属性是is_l[...]

撰写于:  浏览:507 次  分类:PyTorch 教程
1、PyTorch设置随机数的目的在神经网络中,参数默认是进行随机初始化的。不同的初始化参数往往会导致不同的结果。当得到比较好的结果时我们通常希望这个结果是可以复现的,在PyTorch中,通过设置全局随机数种子可以实现这个目的。2、PyTorch seed 设置方式seed = 0 torch.manual_seed(seed) [...]

撰写于:  浏览:2368 次  分类:PyTorch 教程
提示:本文更新于2024年9月27日PyTorch是一个由Facebook的人工智能研究团队开发的开源深度学习框架,发布于2016年。如今PyTorch已经成为全球最流行的深度学习框架,建议大家以PyTorch为主,谨慎选择TensorFlow或者Paddle(百度飞桨)。1、PyTorch最新版本是多少?当前PyTorch的最新版本是:PyTor[...]

撰写于:  浏览:798 次  分类:PyTorch 教程
1、PyTorch whl文件安装当我们需要安装特定CUDA版本的PytTorch的时候,掌握whl文件的安装则是十分必要。PyTorch whl文件的下载地址是:https://download.pytorch.org/whl/torch_stable.html1.1、PyTorch版本与Python版本的关系安装PyTorch要注意对应Pyth[...]

撰写于:  浏览:897 次  分类:PyTorch 教程
在PyTorch中,torch.nn.Module模块中的state_dict函数获得的一个字典变量,其存放训练过程中需要学习的权重和偏执系数,如下所示:代码1:import torch.nn as nn module = nn.Linear(2, 2) print(module.state_dict().keys())代码2:import t[...]

撰写于:  浏览:795 次  分类:PyTorch 教程
1、torch.is_storage(obj)函数介绍测试obj是不是storage类型,如果是的话就返回True,否则返回False。2、什么是Storage?在PyTorch中,Tensor 分为头信息区(Header)和存储区(Storage)。头信息区(Header)主要存储Tensor的形状(size)、步长(stride)、数据类型(t[...]

撰写于:  浏览:1053 次  分类:PyTorch 教程
1、Tensor的grad属性介绍PyTorch的Tensor有个grad属性,默认情况下,该属性为None,当第一次调用backward()计算梯度时,此属性被赋值,其值为计算的梯度。并且,将来对backward的多次调用之后,还会累积梯度,所以大家要记得清空梯度。2、Tensor的grad应用举例import torch x = torch.[...]

撰写于:  浏览:793 次  分类:PyTorch 教程
torch.is_tensor 简介torch.is_tensor(obj),此方法很直观,如果obj是tensor的话返回true,否则返回false。与此方法对应的另一个方法是:isinstance(obj, Tensor)。需要注意的是,torch.is_tensor(obj)是torch的一个方法,而isinstance(obj, Tens[...]

关注公众号,了解站长最新动态

    友情链接